ON A CLASS OF II1 FACTORS WITH AT MOST ONE CARTAN SUBALGEBRA, II By NARUTAKA OZAWA and SORIN POPA Dedicated to Uffe Haagerup on his 60th birthday
نویسنده
چکیده
This is a continuation of our previous paper studying the structure of Cartan subalgebras of von Neumann factors of type II1. We provide more examples of II1 factors having either zero, one, or several Cartan subalgebras. We also prove a rigidity result for some group measure space II1 factors.
منابع مشابه
On a Class of Ii1 Factors with at Most One Cartan Subalgebra Ii
This is a continuation of our previous paper studying the structure of Cartan subalgebras of von Neumann factors of type II1. We provide more examples of II1 factors having either zero, one or several Cartan subalgebras. We also prove a rigidity result for some group measure space II1 factors.
متن کاملOn a Class of Ii1 Factors with at Most One Cartan Subalgebra
We prove that the normalizer of any diffuse amenable subalgebra of a free group factor L(Fr) generates an amenable von Neumann subalgebra. Moreover, any II1 factor of the form Q ⊗̄L(Fr), with Q an arbitrary subfactor of a tensor product of free group factors, has no Cartan subalgebras. We also prove that if a free ergodic measure preserving action of a free group Fr, 2 ≤ r ≤ ∞, on a probability ...
متن کاملStrongly Solid Ii1 Factors with an Exotic Masa
Using an extension of techniques of Ozawa and Popa, we give an example of a non-amenable strongly solid II1 factor M containing an “exotic” maximal abelian subalgebra A: as an A,A-bimodule, L(M) is neither coarse nor discrete. Thus we show that there exist II1 factors with such property but without Cartan subalgebras. It also follows from Voiculescu’s free entropy results that M is not an inter...
متن کاملOn a Class of Type Ii1 Factors with Betti Numbers Invariants
We prove that a type II1 factor M can have at most one Cartan subalgebra A satisfying a combination of rigidity and compact approximation properties. We use this result to show that within the class HT of factors M having such Cartan subalgebras A ⊂ M , the Betti numbers of the standard equivalence relation associated with A ⊂ M ([G2]), are in fact isomorphism invariants for the factorsM , β HT...
متن کاملApplications of deformation rigidity theory in Von Neumann algebras
This work contains some structural results for von Neumann algebras arising from measure preserving actions by direct products of groups on probability spaces. The technology and the methods we use are a continuation of those used by Chifan and Sinclair in [Ionut Chifan and Thomas Sinclair. On the structural theory of II1 factors of negatively curved groups, ArXiv e-prints, March 2011]. By empl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010